National Agriculture in the Classroom Louisville, KY

From Soil to Plate June 18, 2015 (Wednesday) 3:30 - 4:45 p.m.

Carole Lee carole.lee@maine.edu Assistant Professor of Elementary Education

Poll: How many?

- A. Elementary teachers
- B. Middle school teachers
- C. High school teachers
- D. College professors
- E. Farm Bureau
- F. Work related with agriculture

Agenda

- Why I introduce agriculture to my students (pre-service elementary teachers)
- Partnership with Maine Agriculture in the Classroom
- Activities done

10 mins

Today: Hands-on activities

Food Test
Soil Test

Wrap up

Questions and Answers

10 mins

LOGIC MODEL for AGRICULTURAL LITERACY PROGRAMS

National Research Agenda for Agricultural Education - Priority 1 (Doerfert, 2011)

- Increases understanding
- Demonstrates impacts
- Determines the potential of emerging technologies for communication

Situation: By 2050 the world's population is projected to reach nine billion people requiring agricultural production to double-with less land and water-while sustaining our planet. This increase in population will require more food to be produced in the next 50 years than the past 10,000 years combined (Borlaug, 2000).

Long-term Result

An agriculturally literate society that understands and can communicate the source and value of agriculture as it affects our quality of life.

Specifically, a society that:

values agriculture

Knowledge

- makes informed decisions and advocates for agriculture
- supports rational and practical agricultural policies resulting in a food-secure nation
- encourages the preparation of an agricultural workforce

Attitudes

works to ensure that farmers can provide a healthy, safe, and adequate food supply

Skills

Outcomes: Changes in ...

Inputs

Educators of PK-Adult Training

K-20 Students/Youth Activities

Policymaker Information

Behaviors

Consumer-based Information

National Agricultural Literacy

Outcomes (Spielmaker, 2014)

K-20 Assessment

Program Evaluation

Authors

From the Ground Up

Outputs

Financial Resources

Program Resources ' Human Resources

Collaboration Partners

References

Practices

king the GM food aid debate to Africa: Are we going

ielmaker, D. M. (2013). National agricultural literacy outcomes. Retrieved fro

Agriculture Partnership Program

Maine Agriculture in the Classroom	Department of Agriculture – Integrated Pest Management
Willie Grenier – Executive Director	 Cathy Murray - Entomologist

science methods class – 16 hours teaching time spent on agriculture (one-third of the total time)

Resources from MAITC & Department of Agriculture

Integrated Pest Management Used Here IPM is a holistic IPM is better for our approach to pest management. environment. Plants are IPM uses monitored to detect 'good bugs' problems early. against 'bad bugs.'

Our Goal

IpM Center

From Soil to Plate

Macronutrients – N (nitrogen), P (phosphorus), K (potassium)

Micronutrients – Mn, Fe, Cu, Zn

Macronutrients - CHO, Proteins, Fat

Micronutrients – vitamins, minerals (Ca, Mg, P, Na, K)

Pre-test questions

- Pre-test questions
- Results: *N*=12
- Q1

Vegetable	Plant Part
Tomato	Fruits (3), Seed (1), Stem (2), Don't know (6)
Radish	Root (10), Leaves (1), Stem (1)
Carrot	Root (10), Don't know (2)
Green Bean	Seeds (3), Stem (2), Don't know (7)
Potato	Root (10), Stem/ Tuber (1), Don't know (1)

Q2. What do seeds require to germinate?

Answer: water, warmth

Some misconceptions

- Seeds require pollination to germinate (2)
- Seeds require sunlight to germinate (3)
- Seeds need minerals to germinate (1)
- Seeds need soil to germinate (1)
- Don't understand the word germinate (1)

Q.3 What are the three essential chemicals in fertilizers?

- Answer: N, P, K
- No one got it correct.
- Most students put down oxygen, hydrogen, carbon, nitrogen

Q4. Describe the test for the presence of sugar, starch, protein and fat in food?

- Fat- grease on paper towel (1)
- Starch iodine (1)
- Don't know (10)

5E Learning Cycle

Engage

•Study the soil layer by shaking some soil with water in a plastic bottle.

•Journal the germination of seeds in a plastic cup.

•Language integration: Read two trade books

Clay layer

Silt layer

Sand layers

Study of soil texture

N.B. Use soil in your yard. Don't use potting soil bought from stores.

Explore

- 1. Seed Surprises (PK-3)
 - an inquiry-based activity to understand
 - conditions of germination warmth and moisture
 - Conditions of growth temperature, moisture and light
 - Math integration: Measure the length of the shoot of the germinated seeds and draw a graph to show the increase in length
- 2. Root, Root for life (Grades 2-6)
 - an inquiry-based activity to understand
 - the growth of carrot and radish
 - the functions of roots
- 3. Mighty Macros (Grades 6-12)
 - an inquiry-based activity of Food test
 - Glucose Benedict's test
 - Starch lodine test
 - Protein Biuret test
 - Fat Spot test

4. Test Nitrogen (N), Phosphorus (P), Potassium (K) in soil using the Soil Test Kit.

Germination of seeds

Growth of the plants

What parts of the plants are we eating?

Today Activities

- Food Test
- Soil Test

N deficiency: leaves turn light green, then yellow patches appear. Midrib often turns pink.

Nitrogen is vital in chlorophyll production (for green leaves), DNA and proteins.

P deficiency: leaf margins often turn scorched brown, not too much yellowing.

Phosphorus is important for roots growth, and flower and seed formation.

A balanced diet - To be healthy

National Standards

- Science Standards (NGSS)
 - Science as Inquiry
 - Life Science
 - Earth Science
- Language Arts
 - Reading and Writing
- Math

- Collecting Data and Representing Data

Test for Nutrients in Food

- Test for carbohydrates
 - Glucose e.g. honey
 - Sucrose e.g. sugar
 - Starch e.g. rice, bread
- Test for protein e.g. milk
- Test for fat e.g. butter, oil

Test for nutrients in Soil

Soil Test – N, P, K and pH Chart

Explain

- Growth cycle of plants (seeds germination & plant growth)
- Conditions for germination
- Importance of soil
- Importance of chemical nutrients in soil NPK
- Importance of food nutrients for humans Carbohydrates, Protein and Fat

Useful websites

- Simulation of plant growth Explorelearning.com
- Soil test and Soil analysis
 www.kansasgreenyards.org
 healthy yards videos
 - Using test strips for pH and NPK
 - Texture analysis
- Nutrients for Life
 Properties of soil videos

National Agriculture in the Classroom Louisville, KY

From Soil to Plate

Questions and Comments

Carole K. Lee carole.lee@maine.edu University of Maine at Farmington Assistant Professor of Elementary Education

Seed Germination

- Misconceptions
- Knowledge gained

NPK – Up, Down, All Around

- N (Up) promote green leaf growth
- P (Down) promote healthy root system, and also flower blooms and fruit production
- K (All Around) build strong cells

Evaluation

 Post-test (can be multiple choice questions or open-ended questions or a reflection paper on student's learning experience)

Benefits

- An authentic experience of learning about agriculture
 - Maine Agriculture in the Classroom
- Inquiry-based science learning
- Brainstorming ideas
- Researching and Collaborating
- Problem-solving

